208. The Reaction Volume for the Equilibrium between the Lanthanide(II1) Ennea- and Octaaqua Ions as a Diagnostic Aid for their Water-Exchange Mechanisms

Preliminary Communication

by **Gabor Laurenczy** and **Andre E. Merbach***

Institut de chimie niinerale et analytique, Universite de Lausanne, Place du Chlteau **3,** CH-1005 Lausanne

(17.X.88)

The equilibrium between $[Ce(H₂O)₉]$ ³⁺ and $[Ce(H₂O)₈]$ ³⁺ has been followed in aqueous solution at 298 K by variable-pressure UV spectroscopy at 295 nm. The derived volume of reaction for the dissociation of this enneaaqua ion is $\Delta V^0 = +10.9 \text{ cm}^3 \cdot \text{mol}^{-1}$. This value, together with the previously determined activation volume, $dV^{\neq} = -6$ cm³·mol⁻¹, for H₂O exchange on [Ln(H₂O)₈]³⁺ (Ln = Tb *to* Tm), allows the assignment of an associative interchange *I,* mechanism on these octaaqua ions.

Advantage has recently been taken of available high-field NMR spectrometers (4.7 to 9.3 Tesla) to determine the very fast H,O-exchange kinetics on six paramagnetic heavy lanthanide ions $[1]$. By combining measured $[7O-NMR$ chemical shifts, longitudinal and transverse relaxation rates, it was possible to show that the exchange rate constants k^{298} decrease regularly with the ionic radius from Tb³⁺ (5.0 \times 10⁸ s⁻¹) to Yb³⁺ (4.1 \times 10⁷ s⁻¹). **Along** the same lines as that used successfully to determine the solvent-exchange mechanisms on the first-row transition-metal series hexasolvato ions [2], the effect of pressure on the H₂O-exchange rates of the heavy lanthanides has been studied. The resulting ΔV^* values, close to -6 cm³ · mol⁻¹, indicate an associatively activated exchange mechanism [3]. However, for a more detailed mechanistic assignment, one should know the hydration number of the reacting ions, and to allow the distinction between *I,* and *A* pathways, the ΔV^*_{lim} value for the limiting mechanism.

The coordination of $Ln³⁺$ ions in aqueous solution is certainly one of the most controversial questions of lanthanide chemistry [4]. Evidence has been accumulated recently for a hydration-number change from 9 to 8 in the middle of the lanthanide series [5]. The neutron-scattering first-order difference technique, pioneered by *Enderby* and *Neilson* [6] was applied to obtain specific information on the metal neighbourhood. Thanks to several technical improvements, it has been possible to work with reasonably dilute solutions (1 *m* or less) ensuring a complete hydration of the species in solution and also to avoid counterion coordination. A coordination number of eight (Dy : 7.9, and Yb: 7.8₄) was found for the two typical heavy lanthanide ions studied [7], corresponding most likely to dodecahedron or square-antiprism geometry.

The knowledge of the ΔV^*_{lim} value is linked to the availability of the reaction volumes ΔV^0 for the equilibria between ennea- and octaaqua ions for which no equilibrium studies exist to date. The electronic spectrum of $Ce(III)$ [8] is simpler and more intense than the

Fig. 1. Pressure effect on the absorption spectra of a 0.0329 **M** $Ce(CIO_4)$, and 0.100 **M** $HClO_4$ aqueous solution at 298 *K.* From top to bottom: **P[MPa]** = 2.2,42.1, 80.5, 127.7, 170.8, and 200.4.

spectra of the other elements in the series $[9]$. In the solid state $[10]$, the five UV absorption bands of $[Ce(H, O)₀]$ ¹⁺ are assigned to 5d \leftarrow 4f transitions. They are due to the five *Kramers* doublets of the excited ${}^{2}D(5d)$ multiplet split by ligand-field interactions and spin-orbit couplings of the 5d electron in $[Ce(H₂O)₉]$ ³⁺. However, in aqueous solution there is an extra week band at 295 nm ascribed to [Ce(H,0),]3+ [8]. Recently, *Kobuyashi* and coworkers [11] have quantitatively interpreted the temperature dependence of these $5d \leftarrow 4f$ transitions in terms of *Reaction I.* Their results, obtained between *5* and *55",* give

$$
[Ce(H2O)9]3+ \nightharpoonup [Ce(H2O)8]3+ + H2O \nightharpoonup (1)
$$

 $K^{298} = 0.3$, $AH^0 = +13$ kJ \cdot mol⁻¹ and $AS^0 = +33$ J \cdot K⁻¹ \cdot mol⁻¹. We have followed the decrease, with increasing pressure, of the absorption band due to $[Ce(H, O)]$ ¹⁺ at 295 nm and 298 K *(Fig. 1)*. The molar absorptivity of the octaaqua ion ε_{295} , the equilibrium constant *K*, and the reaction volume AV^0 are related by *Eqns.* 2-4, where A_{295} is the

$$
A_{295} = \varepsilon_{295} \times l \times [[\text{Ce}(H_2\text{O})_8]^{3+}] \tag{2}
$$

$$
K = [[Ce(H2O)8]3+]/(CT - [[Ce(H2O)8]3+])
$$
(3)

$$
\ln K = \ln K_0 - \left(\Delta V^0 P/RT\right) \tag{4}
$$

measured absorbance, *l* the optical pathlength, and C_T the total Ce(III) concentration. A multiparameter least-squares fitting procedure was applied to the experimental data, using *Eqns.* 2-4, leading to $\varepsilon_{295} = 99 \pm 2 \text{ m}^{-1} \cdot \text{cm}^{-1}$, $K_0 = 0.21 \pm 0.03$, and $AV^0 = +10.9 \pm 0.3$ cm³ · mol⁻¹. The pressure variation of the equilibrium constants is illustrated in *Fig.2.* The absolute partial molar volume of aqua ions in solution, in relation with their coordination number and their ionic radii, can be estimated using a semi-empirical model developed by *Swaddle* [121. The volume difference for the two coordinances, corresponding to the dissociation of one water from $[Ce(H, O)₀]$ ³⁺ to form $[Ce(H₂O)₈]³⁺$, has been calculated using cerium ionic radii from *Shannon* [13]. This volume is $+12.8$ cm³ \cdot mol⁻¹ and agrees well with that determined experimentally. Further work is in progress to determine the thermodynamic parameters of the hydration equilibria for heavier lanthanide(II1) ions for a deeper understanding of their aqueous behaviour and to obtain a more detailed picture of their H_2O -exchange mechanisms.

The activation volume ΔV^*_{lim} for a hypothetical limiting associative H₂O-exchange reaction on $[Ce(H₂O)₈]³⁺$ should be close [2] to -11 cm³ · mol⁻¹ according to the reaction

Fig. 2. The normalised logarithm of the stability constant K, as a function of pressure for the reaction $[Ce(H₂O)₉]$ ³⁺ \rightleftarrows $[Ce(H₂O)₈]$ ³⁺ + $H₂O$

volume measured for *Reaction 1.* The assumption that this reaction volume is similar along the lanthanide series, and the fact that the experimental activation volumes, - ⁶ cm³ · mol⁻¹, for the H₂O exchange on the ions $[Tb(H_2O)_8]^{3+}$ to $[Tm(H_2O)_8]^{3+}$ are clearly smaller, leads to the conclusion that the H,O-exchange mechanisms on these octaaqua ions occurs most probably *via* a concerted *I,* mechanism. The likely geometry for the ennea-coordinated transition state is a trigonal tricapped prism, since many hydrated salts of the lanthanides exhibit this structure in the solid state *[5].*

We thank Prof. C. *K. Jsrgensen* for helpful discussions. Financial support from the *Swiss National Science Foundation* **is** gratefully acknowledged.

Experimental. – Hydrated Ce(ClO₄)₃ was synthesized from Ce₂O₃ [3]. The spectrophotometric study was accomplished on a 0.0329 M Ce(ClO₄), and 0.100 M HClO₄ aq. soln., with a *Perkin-Elmer Lambda 5* spectrophotometer equipped with a high-pressure optical cell (path-length: 2.1 cm) described in [14].

REFERENCES

- [I] C. Cossy, L. Helm, A. E. Merbach, *Inorg. Chem.* **1988,27,** 1973.
- [2] A.E. Merbach, *Pure Appl. Chem.* **1987,59, 161.**
- [3] C. Cossy, L. Helm, A. E. Merbach, *Inorg. Chim. Acta* **1987,139, 147.**
- **[4] S.** F. Lincoln, *Adv. Inorg. Bioinorg. Mechanisms* **1986,4,** 217.
- [5] C. Cossy, A.E. Merbach, *Pure Appl. Chem.* **1988,60,** 1785.
- **[6]** J. E. Enderby, *G.* **W.** Neilson, *Rep. Prog. Phys.* **1981,44,** 593.
- [7] C. Cossy, **A.** C. Barnes, J. **E.** Enderby, **A. E.** Merbach, submitted for publication.
- [8] C.K. Jørgensen, J.S. Brinen, *Mol. Phys.* **1963**, 6, 229.
- [9] W.T. Carnall, in 'Handbook on the Physics and Chemistry of Rare Earths', Eds. K.A. Gschneider and L. Eyring, North-Holland Publ. Co., Amsterdam, 1979, Vol. 4, Chapt. 24.
- [lo] K. Okada, *Y.* Kaizu, H. Kobayashi, K. Tanaka, F. Marumo, *Mol. Phys.* **1985,54,** 1293.
- [ll] **K.** Miyakawa, *Y.* Kaizu, H. Kobayashi, *J. Chem.* Soc., *Furaday Trans. I 1988,84,* 1517.
- [12] T.W. Swaddle, *Adv. Inorg. Bioinorg. Mechanisms* **1983,2,** 95.
- [I31 R.D. Shannon, *Acta Crystallogr., Sect. A* **1976, 32,** 751.
- 114) D.T. Richens, **Y.** Ducommun, A.E. Merbach, *J. Am. Chem. Soc.* **1987,109,603.**